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Abstract

Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-

molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of 

this opus is “tethering”—a strategy in which a multifunctional small molecule serves as a 

template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully 

applied to control diverse biological outcomes such as protein–protein association, protein 

stability, activity, and improve imaging capabilities. A new twist on this strategy has recently 

appeared, in which the small-molecule probe is engineered to unleash controlled amounts of 

reactive chemical signals within the microenvironment of a target protein. Modification of a 

specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-

of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the 

powerful proximity-enhanced chemical biology toolsets into two paradigms: “multifunctional 

scaffolding” versus “on-demand targeting”. By addressing the latest advances and challenges in 

the established yet constantly evolving multifunctional scaffolding strategies as well as in the 

emerging on-demand precision targeting (and related) systems, this Perspective is aimed at 

choosing when it is best to employ each of the two strategies, with an emphasis toward further 

promoting novel applications and discoveries stemming from these innovative chemical biology 

platforms.
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Better Together? Remodeling Proximity-Targeted Organic Chemistry

In the post-genomic era, emphasis is placed on understanding how various biological 

macromolecules specifically interact and assemble, either through protein–protein or 

protein–ligand associations, to orchestrate dynamic responses that influence physiologic 

decision-making.1, 2 This impetus has sparked new methods to interrogate how these 

seemingly minor alterations drive phenotypic responses.3–7 The challenges in this field are 

manifold: there are over 20,000 protein-coding genes in humans8—and even more 

macromolecule or small-molecule potential binding partners. All these components can 

modulate the functions and dynamics of the interactome specific to individual gene 

products. Thus, identifying target(s), binding sites, and the nature of the input signal, and 

ultimately forging a precise link between these myriad upstream events and a phenotypic 

output is no easy task. Arguably, the go-to chemical biology method to engender specificity 

in these highly interconnected networks—space, time, gene or pathway—is proximity 

enhancement. This fundamental tenet has been employed to resolve complex biological 

quandaries. This Perspective conceptualizes the latest proximity-enhanced design strategies 

with an eye toward stimulating further innovation and highlighting areas where 

improvements are required. We split chemical tethering into two classes (Figure 1) and 

systematically discuss the merits and demerits of both. Through this organization, we hope 

to help the researcher decide the ideal strategy to solve a specific biological problem, and to 

further seed new inspirations and spur on next-generation chemical biology innovations.

Tethering is the blueprint of established proximity-augmented hetero-functional small-

molecule probes. We define Class I proximity enhancement to be a system in which the 

chemical linker between the two poles of a bifunctional small-molecule probe is unbroken 

throughout an experiment (Figure 1). There is widespread use and diverse applications of 

the Class I strategy in biology, yet due to the rapid expansion of the field, it is timely to re-

stress the parallels of all these approaches at the chemical level while tipping our hat to the 

huge diversity they can engender at the biological level.6, 7, 9–16 The second act of this 

Perspective broaches Class II proximity enhancement. Instead of employing permanently-

tethered small-molecule scaffolds, Class II uses a bifunctional small molecule that contains 

a recognition unit at one pole but at the other a latent warhead (such as a sensitizer or a 

photocaged precursor) that can be activated in situ (Figure 1). Early incarnations of this new 

concept have interrogated specific redox response by targeted redox signaling on 

demand.17–19 Related small-molecule-directed in-situ unmasking ideas of reactive entities 
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have also been powerfully applied in characterizing nascent interactomes such as 

mitochondrial proteome mapping20–23 and ribosome profiling24, 25. We focus on the 

common concepts that drive and ultimately limit these emerging strategies. Astoundingly, 

because the core chemical concepts are similar, the respective classes show similar strengths 

and limitations, implying that there may be crosscutting solutions to some of these problems. 

In most cases, we have limited ourselves to examples from the past 2–3 years.

Class I. Two Types of Multicomponent Tethers: Fundamental Concepts

The seminal proof of concept for the power of tethered small-molecule probes in biology 

was “chemical inducers of protein dimerization” (CID).14, 26 CID uses a bifunctional small 

molecule that interacts with two separate proteins of interest (POIs) to induce the formation 

of an active complex or localization-specific recruited state. The CID-induced protein 

dimerization event was shown to be sufficient to prompt tripping of signaling nodes, 

eliciting selective pathway activation. CID was first introduced in 199326 and proved to be a 

game-changer in the field that spawned many tethered small-molecule modulators. These 

bifunctional tethered probes were successfully put to task to help understand diverse 

biological quandaries.13, 27, 28 Herein we subcategorize the established scaffolding systems 

into two subtypes: Class Ia, in which bifunctional small molecules forge new intermolecular 

interactions, such as heterodimerization, that in turn elicits a downstream biological 

response (typically a gain of function or increase in a background rate); and Class Ib, where 

two termini of the bifunctional small molecule interact with the same target POI, such as in 

site-specific irreversible dye labeling or covalent enzyme inactivation (Figure 1). We stress 

that although applications that stem from both subclasses are diverse and far-reaching, they 

are unified by the elegant simplicity of a design based upon proximity promoting a response/

interaction. Beyond CID-based implementation of tethered probes13, 27, 28, recent examples 

in the first subclass include proteasome targeting,29, 30 T cell activity control,31 antibody 

recruitment,9, 32 and development of hybrid pharmaceuticals33, 34. The second subclass is 

represented by multi-functional small-molecule-derived conjugates that function as potent 

and specific inhibitors, 35, 36 biosensors,37, 38 reporters,10, 39, 40 and protein-activity 

modulators41, 42.

Class Ia. Intermolecular Recruitment by Small-Molecule Tethers

We focus on the following latest developments exploiting small-molecule scaffolding to 

elicit gain-of-function responses. We draw the reader’s attention to recent excellent and 

comprehensive accounts of CID-driven biological applications13 and other approaches 

utilizing small-molecule-based tethering platforms.7

Targeted Protein Degradation by Non-Peptide-Based PROTACs

Proteolysis targeting chimeras (PROTACs) are bifunctional small molecules that induce 

degradation of their target POI.29 PROTACS work by a validated mechanism in which one 

pole of the PROTAC binds to the POI while the other PROTAC pole is a recognition unit 

that recruits a specific E3 ligase. The proximity of the ligase and target POI is sufficient to 

elicit polyubiquitination of the POI, marking the target out for proteasomal degradation 

(Figure 2). The original E3 ligase recognition pole was a functionalized peptide that 
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specifically recruits the von Hippel-Lindau (VHL) E3 ligase. The reliance on peptide-based 

ligands was a significant stumbling block to the broad applicability of PROTACs because 

peptides suffer from low cell permeability43 and susceptibility to proteases,44 among other 

drawbacks. Recently, VHL-specific non-peptide small-molecule ligands have been shown to 

function as the E3 ligase recognition pole.45 These next-generation PROTACS are active at 

sub-nanomolar concentrations. Most impressively, each hetero-bifunctional all-small-

molecule next-generation PROTAC can facilitate multiple protein-degradation turnovers, 

resulting in >90% knockdown—a result on par with complementary genetic methods such 

as shRNA- and CRISPR/Cas9-assisted gene knockdowns and knockouts.46, 47 Although 

many strategies for selective protein degradation of artificial POIs have been described,29 

PROTACs remain one of the most promising for drug discovery because they have been 

proven to work on a variety of endogenous target POIs.

T Cell Activity Control by On-Switch CARs

T cells engineered to express chimeric antigen receptors (CARs) have proven effective 

against refractory B cell cancers in clinical trials.48 Despite this promise, sporadic toxicity 

has been observed due to off-target killing of healthy cells. Thus to design precision-

controlled therapeutic T cells, a “split” CAR—in which the intracellular portion is expressed 

as two separate polypeptides that can coalesce in the presence of a bifunctional small 

molecule—was envisioned (Figure 3).31 In the absence of the small molecule, the antigen 

receptor is defunct, and the T cells cannot function effectively, even in the presence of their 

cognate antigen. However, addition of the small-molecule dimerizers allows the chimeric 

receptor to regain function, and only in the presence of the antigen, are T cells activated. 

This promising binary input system, coined “on-switch CARs”, was shown to be able to 

elicit small-molecule-titratable tumor cell killing and was tolerated by mice.

Antibody Commissioning by SyAMs

Our next example shows how tethering can be equally effective at engendering a gain of 

function by bringing two different cell types together.32 Importantly, although the arena in 

which the events play out is vastly different from those above, the foundational chemical 

principles remain the same. Synthetic antibody mimics (SyAMs) use a bifunctional small-

molecule that can bind to both a cell-surface membrane antigen, selectively overexpressed in 

prostate cancer cells, and an effector domain that is present in immune cells, Fc gamma 

receptors (FcγRs) (Figure 4).49 Thus SyAMs initiate selective phagocytosis of the target 

cancer cells while avoiding non-cancerous cells. The advantages of SyAMs over antibody 

therapies illustrate the need for contextually-relevant comparisons: for instance, although 

SyAMs are much larger than conventional small-molecule therapeutics, they are only 5% of 

the molecular weight of an antibody (many of which are also used or in trials to treat various 

tumors), allowing for better solid tumor penetration. Many cell types also co-express both 

activating and inhibitory FcγRs, both of which can be bound by antibodies. On the other 

hand, SyAMs only bind Type I (activator) FcγR, and hence are capable of selectively 

initiating immune-mediated toxicity.

Interestingly, on-switch CARs and SyAMs show how a similar problem—how to harness 

immune cells for targeted therapeutic value—can be tackled in two different ways while still 
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using Class Ia tethering as a core concept. In on-switch CARs, intracellular tethering relays 

signals in an engineered immune cell, whereas in SyAMs, extracellular tethering 

choreographs the physical interaction between the host’s immune cells and the intended 

target cell. This comparison thus serves as testament to the versatility of bifunctional small 

molecules in terms of their mechanism and applicability across various locales and contexts.

Most Class Ia systems have no Class II counterpart because the small molecule must behave 

as a scaffold for a sustained period to allow a response to occur. The recently demonstrated 

recyclability of PROTACs45 allows for low dosage while maintaining high efficacy, a 

benefit which is also conferred by Class II strategies (vide infra). In the case of PROTACs, 

high efficacy at low dosage is possible because the PROTAC proceeds through non-

covalently-linked intermediates and elicits a gain of function (degradation). The latter 

highlights an important “win” for bifunctional molecules over single-site binders (e.g., 

inhibitors), because small-molecule inhibitors typically require 50% or more target-site 

occupancy to be effective.50 On the down side, given the logistical issues with marshaling 

complex organizations, intricate design is required to achieve success of Class Ia systems. 

Furthermore, how such complex small molecules behave in vivo in terms of stability, 

tolerance, and off-target spectrum—which is likely a function of both the poles and the 

linkers—still needs to be fully evaluated. Even if there is little problem with chemical 

stability, the pathways targeted are intrinsically complex51–55 and future work must also 

seek to establish a deeper understanding of the generality, scope, and shortcomings in 

various cell and tissue types. Encouragingly, PROTACs have recently shown efficacy in 

various mouse tissues45 and early CID molecules have also proven effective in mouse 

models. Hopefully, the coming years will see more data evaluating utility of bifunctional 

small-molecule ligands in animals.

Class Ib

Sensing, Activity Modulation, and Imaging by Protein–Ligand Intramolecular Tethers.

Reversible Binding Strategies

Biosensing by LUCIDs: The pressing need to monitor changes in the abundance as well as 

spatiotemporal patterns of small-molecule analytes in a wealth of applications has spurred 

on the development of numerous sophisticated biosensors.56–59 Several such biosensors 

exploiting tethered hetero-trifunctional small molecules have emerged over the past decade. 

In a recent invention termed luciferase-based indicators of drugs (LUCIDs), a low-cost 

point-of-care drug sensor is patterned using a three-component fusion protein:38 SNAP Tag 

(a ~20 kDa polypeptide that binds covalently to small molecules functionalized with a 

benzylguanine unit60), nano-luciferase (which engages in a chemiluminescent reaction with 

its substrate furimazine61), and the POI (which binds to the drug in question). Tethered 

trifunctional small molecules are custom-designed to recognize each piece of the three-

component fusion protein: a benzylguanine motif that covalently binds to the SNAP Tag, a 

fluorophore to permit bioluminescence resonance energy transfer (BRET)62 with nano-

luciferase, and a non-covalent ligand specific to the POI. Covalent binding of SNAP Tag to 

the trifunctional small molecule and ensuing proximity-assisted non-covalent association of 

the specific ligand on the opposite pole of the tri-functional small molecule to the POI 
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facilitates BRET between the fluorophore and nano-luciferase (Figure 5). Upon addition of a 

free test ligand that competes with the tethered small molecule for binding to the POI, the 

non-covalent interaction between the tethered pole and the POI breaks, lowering the BRET 

ratio. This system renders the BRET ratio dependent upon test ligand concentration and 

presents a useful platform for real-time interrogations into dose-dependent fluxes of 

therapeutics in blood samples. The ratiometric measurement sidesteps some of the generic 

issues common to biosensors,36 affording the method an elegant simplicity of use as a 

portable system for field testing. However, masterminding these kinds of biosensors 

demands a great deal of protein engineering to solve a complex three-component problem. 

Additionally, this method is currently limited to POIs for which established reversible 

ligands exist that, despite being chemically modified to accommodate a linker, can bind a 

site on the POI that is regulated by binding of the test ligand, e.g., trimethoprim (TMP) to 

dihydrofolate reductase (DHFR)63, cyclosporin A to cyclophilin A64, and benzene 

sulfonamide derivatives to human carbonic anhydrase II (HCA)65. This strategy will only be 

most accurate to titer concentrations of ligands that bind reversibly to the target site 

(arguably the most prevalent class of ligands available66), and careful considerations must 

be taken if the test ligand has long residence times67–69 on its target POI to ensure complete 

equilibration.

Protein Activity Modulation by CLASH: Molecular switches have been reported in which 

a freely diffusible effector protein sterically regulates binding of a functionalized ligand to 

its POI.70 The setup of this platform is similar to LUCIDs38 in that a covalent interaction 

between SNAP tag and a benzylguanine motif orchestrates non-covalent assembly on a 

sophisticated fusion protein. In this instance, however, the engineered small-molecule probe 

contains binding sites for the fusion protein as well as a binding site for an exogenous 

protein (Figure 6a). The ligand to the exogenous protein and the ligand to the POI within the 

fusion protein system are juxtaposed such that addition of the exogenous protein and 

accompanying formation of a new protein–ligand complex prevents the POI from binding to 

the tethered ligand. This intervention provides a dynamic molecular switch that is controlled 

by the concentration of the effector protein. In a proof-of-principle example of this chemical 

ligand-associated steric hindrance (CLASH) method42, proximity-directed control of the 

activity of luciferase fused to SNAP Tag was demonstrated (Figure 6a). In the ground state, 

a multi-functional conglomerate is created, in which luciferase is covalently linked to 

coelenteramide (a reversible inhibitor)71 via conjugation to the SNAP Tag. The 

coelenteramide pole is also functionalized with biotin.72 In the absence of streptavidin (a 

tetrameric protein which binds to biotin with high affinity), the coelenteramide pole 

efficiently binds and inhibits luciferase. Upon addition of streptavidin, the coelenteramide 

inhibitor can no longer bind luciferase, triggering luciferase bioluminescence73 (Figure 6a). 

This trifunctional tethered manifold was further extended to incorporate a Cy3 fluorophore74 

between the SNAP Tag and the biotin which enables BRET with nano-luciferase in the 

ground state (Figure 6b). In this instance, the fluorophore was brought into contact with 

luciferase using HCA and benzenesulfonamide. By also appending biotin to complete the 

tetra-functional tethered small-molecule arrangement made up of benzylguanine, Cy3, 

benzenesulfonamide, and biotin, it was found that the interaction between HCA and 

benzenesulfonamide was prevented by streptavidin in a dose-dependent manner.
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A potential drawback of the above strategy is that an exogenous protein (e.g., streptavidin) is 

required to effect a response. This set up is arguably more amenable to the detection of a 

particular protein rather than serving as a tunable molecular switch since protein expression 

level is less easily controlled and can be changed with less precision in terms of both timing 

and concentration than small-molecule ligand addition, especially in cells and whole 

organisms. To enable more precise control of the response, a four-component fusion protein 

comprising an acetylcholine esterase (AChE),75 SNAP,60 and CLIP (a ~20 kDa protein tag 

that reacts with benzyl cytosine76) domains, and a membrane-bound HCA was conceived 

(Figure 6c). A tethered small-molecule array was constructed in which edrophonium (ligand 

to AChE) and benzenesulfonamide (ligand to HCA) were joined to a benzylguanine motif 

(irreversible binder to SNAP) via a linker containing a Cy5 fluorophore74. The CLIP domain 

of the four-component fusion protein expressed at the cell surface was pre-labeled with a 

Cy3 fluorophore through the use of a benzylcytosine (irreversible ligand to CLIP)-

functionalized Cy3 probe (Figure 6c). In the absence of tacrine (an AChE inhibitor formerly 

used to treat Alzheimer’s disease77), intramolecular binding of the tethered edrophonium to 

AChE keeps the system in a low-FRET state while the SNAP domain functions as a hinge 

point through which covalent ligand– protein conjugation is achieved. When edrophonium is 

displaced from AChE by tacrine, the system allows the tethered benzenesulfonamide to 

interact with HCA (Figure 6c), switching to a high-FRET state as a result of donor (Cy3) to 

acceptor (Cy5) interaction. Tacrine induction and removal, respectively, enables the tethered 

ligand to reversibly toggle between the binding of tacrine and edrophonium to AChE, which 

corresponds to high- vs. low-FRET states, respectively. This elegant strategy demonstrates 

the power of multiple intramolecular tethers that can be fabricated in situ at the cell surface 

and controlled by a simple change in conditions. However, the level of complexity of the 

system is high, and successful examples have only been demonstrated with extracellular and 

cell-free systems.

Covalent Capture Strategies

Proximity-Directed Ligation: Glycan alterations at cell surfaces are responsible for many 

essential biological functions, such as antigen presentation, cell-to-cell communication, and 

cell differentiation and migration.78–80 It is thus critically important to understand the 

makeup of the cell-surface glycome. Many methods to visualize global glycosylation at the 

plasma membrane have been reported80, 81; however, chemical tethering has recently 

allowed individual membrane protein glycosylation events to be identified.82 The approach 

uses a DNA aptamer83, 84 that can bind specific cell-surface targets. The aptamer is 

modified with biotin (or a small-molecule fluorophore) at one terminus and cyclooctyne at 

the other. Cells are first pre-treated with peracetylated N-azidoacetylneuraminic acid 

(SiaNAz), which is incorporated into glycoproteins by endogenous glycosylation pathways. 

When the aptamer binds to its target receptor at the cell surface, provided the target itself has 

been sialylated with SiaNAz, accompanying enhanced local concentration primes rapid 

covalent conjugation of the cyclooctyne and the azide group via copper-free click 

coupling85, 86 (Figure 7). Using this approach, PTK7, an important receptor in the Wnt 

signaling pathway,87 was identified as a novel sialylated receptor. Although this method 

promises exciting future expansion and applications, the authors provide some evidence to 
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suggest that in certain applications, the cyclooctyne ligand can undergo reaction with 

nucleophilic residues88 leading to relatively high background.

Isozyme-Selective Regulation by BOLT: The demand for targeted small-molecule 

inhibitors or ligands that can selectively alter POI activity without affecting the entire 

proteome has continued to grow over the years.89, 90 This need is magnified because there 

are many protein targets with high homology, but distinct differences in their biological 

functions.91 Identification of specific ligands for these homologous targets remains a 

significant challenge.92, 93 By incorporating a genetically encoded unnatural amino acid94 

on the POI, a new bioorthogonal ligand tethering (BOLT) approach was designed which is 

capable of regulating the desired POI with unparalleled rapidity and selectivity. The 

unnatural amino acid within the POI reacts with one pole of a bifunctional inhibitor, while 

the second pole within the tether functions as a low-affinity ligand. Many proteins may be 

able to bind the low-affinity ligand, yet only the engineered mutant POI can be inactivated 

irreversibly due to formation of a stable ligand-POI complex. The binding enhancement 

conferred by the covalent interaction is most pronounced when a ligand concentration below 

KD is used, such that the ligand has low non-templated occupancy, but irreversible 

chemistry drives saturation of the target POI. The utility of this method was illustrated by 

rapid and specific inhibition of specific MEK isozymes95 featuring complementary 

unnatural amino acids.

A further development uses photochemistry to allow toggling between the inhibited and 

uninhibited states. This work builds upon prior art in which photochromic tethered ligands 

(PTLs) have been used to elicit optogenetic control of living systems. A recent review 

thoughtfully summarizes the design and applications of tethered small-molecule 

photoswitches in live cells and animals.96 The resulting on/off approach called “photo-

BOLT” uses a cis–trans photoisomerizable linker between the two poles of the ligand, 

affording dynamic optochemical control (Figure 8). In the photo-BOLT platform41, when 

the linker is in the trans conformation97, one pole of the bifunctional small molecule is 

covalently conjugated to the unnatural amino acid, and the other pole non-covalently binds 

to the active site of the POI, resulting in inhibition. Inhibition is reversed by illumination of 

the cells at a wavelength that initiates trans to cis isomerization of the linker. In the cis 

isomer, the spatial arrangement of the poles is changed such that the non-covalent-binding 

pole of the ligand is no longer able to interact with the POI and activity is restored. Initial 

proof-of-principle work has demonstrated that BOLT and its derivatives are effective in 

targeting a specific enzyme over a number of closely related analogs. The reliance on 

unnatural amino acids is liberating as there is no need for large domain fusions that may 

affect protein function, but also potentially restrictive, because a readily functionalizable 

residue must be found in proximity to the target ligand binding site that must preserve 

activity even (in the case of photo-BOLT) when functionalized with one geometrical isomer 

of the BOLT ligand. One interesting question is how distance from the target binding site 

and linker length affect the benefit conferred by intermolecular binding. Depending on the 

importance of these parameters, one could envision using a separate binding domain (e.g., 

SNAP) to anchor the ligand to the POI in a similar way to iBOLT.
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Both proximity-directed ligation and BOLT use enhanced local concentrations of a semi-

specific probe to direct a specific interaction to a desired point of origin. Clearly for many 

scenarios this strategy is highly effective. However, it remains to be seen how effective 

systems like BOLT will be in more complex settings. For instance, when the target POI can 

form hetero-oligomers with other isozymes that can interact with the non-covalent-binding 

pole of the bifunctional probe, specificity will likely be diminished. In the event that 

interprotein interactions dominate, inhibition of the undesired isoform/protein may result. 

Judicious choice of a linker length/unnatural amino acid position that favors intramolecular 

interactions may circumvent this issue.

Stable Fluorophore Integration via Proximal Cysteines: The site-specific non-covalent 

labeling of DHFR-fusion proteins with TMP-conjugated fluorescent dyes and analogous 

small-molecule dye labeling methods are widely used.98, 99 In the case of DHFR and TMP, 

the assembly exploits the selective, non-covalent binding of the TMP ligand to E. coli as 

opposed to human DHFR, which results in a protein–ligand complex with a dissociative 

half-life on the order of 20 min100. To increase the residence time of the ligand on the target 

enzyme, this platform has been recently amended such that a covalent (essentially 

permanent) bond between the TMP and DHFR is formed (Figure 9).39, 41, 101 This required 

single modifications to the ligand and protein: synthetic derivatization of the TMP-

conjugated dye to incorporate an acrylamide appendage, and a point mutation (K28C) within 

DHFR. Binding affinity of the K28C-DHFR to TMP is similar to that of the wild type, 

indicating that the mutant enzyme retains its affinity for TMP; however, when the 

acrylamide-functionalized ligand is used, a proximity-induced Michael addition covalently 

links the nucleophilic C28 residue on the mutant DHFR with the ligand. A related 

development utilizing intramolecular tethering for covalent-dye labeling makes use of 

fluorophore-binding peptides, called fluorettes (Figure 10).40 In this case, a reactive cysteine 

residue is built into the linker region of the fusion protein construct made up of a fluorette 

fused to the POI. The tethered small molecule is designed with an α-halocarbonyl function 

appended to a TexasRed-derived fluorophore known to bind reversibly to the specific 

fluorette.102 The rapid non-covalent interaction between the fluorophore and the fluorette 

templates a covalent reaction between the α-halocarbonyl motif on the tether and the 

proximal cysteine on the linker attached to the target POI.

The crux of the method is that typically covalent interactions occur slower than non-covalent 

associations. Should a relatively rapid non-covalent association facilitate covalent bond 

formation, the rate enhancement relative to nonspecific covalent bond formation will allow a 

specific covalent bond forming event to occur. Thus, the best systems will have low intrinsic 

reactivity of the reactive pole, or “warhead”. Obviously, for this process to occur a 

nucleophilic residue (usually cysteine) must be in close enough proximity to the ligand when 

bound to its target to form a covalent bond to the acrylamide moiety. Similar considerations 

have been echoed by the pharmaceutical communities as attempts are made to develop 

irreversible inhibitors from known reversible binders.66, 103–105 The acrylamide warhead 

demonstrated for the DHFR/TMP system is of relatively low intrinsic reactivity/promiscuity, 

so its use will limit off-target binding. It is thus ideally set to pair with trimethoprim, which 

is a high affinity, reversible, yet slow onset inhibitor of DHFR. It is possible to increase the 
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promiscuity of the reactive unit appended to the ligand [such as the α-halocarbonyl in the 

fluorette system (Figure 10)] to drive covalent attachment; however, increasing reactivity 

will typically elevate off-target binding, and will ultimately limit the versatility of the 

method. Clearly, such promiscuous reactive ligands may not be kinetically compatible with 

slow onset inhibitor manifolds either. Similar ways to engender specificity have been 

achieved using unnatural amino acids as in BOLT for instance, and cyclooctyne such as in 

proximity-enhanced aptamer ligation. One alternative solution applicable to ligands with 

relatively long residence times on their target is on-demand activation of a reactive 

functional group once the recognition element has been bound to the POI and the excess 

washed away. In this context, recently developed on-demand targeting or in-situ unmasking 

ideas of proximity enhancement have appeared in the literature (vide infra).

Current Challenges

The pioneering lines of method development within the Class I framework over the recent 

decade have also highlighted several general as well as specific challenges unique to 

individual subclasses. We here summarize these salient points of consideration.

Covalent vs. Non-Covalent Ligand-Binding Modalities

Both covalent and non-covalent modes of ligand binding are evident in the examples 

illustrated above, but the decision as to which strategy is better integrated in developing a 

new toolset is often not obvious. Each tactic has limitations and the following general points 

must be considered. Key aspects are: (1) Reversible binders can function catalytically 

allowing low ligand load while maintaining high efficacy, whereas irreversible binders 

cannot. This aspect applies most readily to Class Ia. (2) Although typically assumed to be 

rapid, binding equilibria of non-covalent ligands may be relatively slowly established and 

occur in a complex, multistep process involving enzyme conformational changes, especially 

for high-affinity binders. Crystal structures of protein/ligand complexes will typically show 

end-point conformations, and thus careful consideration of proximal residues must be made 

especially if a Class Ib strategy is under consideration. (3) Off-rates (residence times) of 

high-affinity reversible ligands can also be prolonged, making washout of ligand prior to 

downstream analysis, or sensing of analyte concentrations, require careful optimization. (4) 

Covalent bond formation is typically slow (detection of a binding event may take minutes to 

hours),66, 106 leading to time-dependent associations that need to be addressed carefully to 

account for off-target effects and characterization of ligand–protein interactions. (5) 

Although not all off-target interactions of irreversible target binders are necessarily covalent, 

those that are will increase as a function of time. Unlike for non-covalent off-target effects, 

the covalent off-targets, once formed, necessitate new protein synthesis to regain activity if 

target inactivation has occurred. Alternatively, if gain of function has occurred, degradation 

coupled with new protein synthesis is required. Given the above, we finally stress that 

conversion of non-covalent binders to covalent binders in a bid to assess on- and/or off-

target binding should be approached with caution.66, 103–107
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Exploiting Functional Constraints

One trivial, but none-the-less common issue is that for Classes Ia and b, care must be taken 

to ensure that tethered macromolecules forged by the multifunctional small-molecule 

scaffolds (either via intermolecular protein–protein tethering enabled by the probes, or 

intramolecular protein–ligand tethering) are able to maintain functionality. An arduous 

series of chemical syntheses (or permuted polypeptides), optimizations of linkers and 

ordering of individual functional groups along the tethered multifunctional small-molecule 

array are often pre-requisites of many successful Class I methods discussed above. Currently 

there are no clear predictive tools for achieving the optimal design a priori. However, what 

has been less well recognized is the fact that these considerations can also be used to the 

researcher’s advantage. In CLASH42 (Figure 6), problems associated with steric repulsion 

have been turned on their head by designing techniques based on steric-strain-directed 

ligand binding and toggling. Photo-BOLT41 also utilizes rigidity-enhanced steric and 

stereoelectronic requirements of intramolecular bond formation to its advantage (Figure 8).

Auto-Inhibition—the Hook Effect

One generally less attractive feature of systems in which a bifunctional ligand must interact 

with two independent binding sites is the prozone or hook effect,108 wherein a drop in 

ternary complex formation occurs at high ligand concentrations. This behavior counteracts 

one of the key benefits of small molecules—their predictable dose response. The hook effect 

occurs because once the ligand is in excess relative to its target protein partners, there is 

sufficient free ligand available for each of the two poles to bind its respective protein target 

separately.109 The result is that these systems are often auto-inhibitory. Although this 

behavior has been helpful to model binding mechanisms in vitro, this complex operation 

confounds downstream biology, especially in cells and whole organisms in which available 

small-molecule ligand concentrations are not a simple parameter to control but often 

dependent on pleiotropic factors. This problem is most applicable to cases where both poles 

of the bifunctional probe interact reversibly as in Class Ia systems discussed above. If one 

pole behaves as an irreversible binder, the Hook effect can be reduced, principally because 

probe concentrations can be more readily controlled and excess can be removed. On the 

other hand, the hook effect is less of an issue if the ligand can behave catalytically as in 

next-generation PROTACs because ligand concentrations can be minimized such that 

competition for binding sites does not occur. Finally, the Hook effect may be almost 

completely obviated in platforms such as BOLT in which one pole of the bifunctional probe 

reacts irreversibly and essentially exclusively with its target site and the second binding site 

is also on the same protein (Class Ib systems).

The Extent of On-Target Specificity

In terms of downstream applications, the majority of applications using proximity-induced 

chemistry are limited by the complexity of the molecules required to achieve their ultimate 

goal. Thus, most multicomponent tethered probes (Class Ia and b)—even those currently at 

the cutting edge of this field—work well in cultured cells, but much less information is 

available on how well they are adaptable to applications in animal models or for human 

disease treatments.110 One of the most obvious roadblocks is a question of size and 
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complexity. The molecular design inherently calls for two poles that are each sufficiently 

complex to bind selectively to a specific target POI, and a linker separating the poles. These 

prerequisites render it challenging to create bifunctional small molecules that adhere to basic 

drug design rules to optimize ADMET properties,111 such as Lipinski’s rule of 5112.

Beyond the above considerations, increased size/complexity of chimeric ligands may 

engender lower target specificity compared to single-site binders. However, this proposition 

is not necessarily true because the downstream application of single-site-binding ligands and 

bifunctional molecules can be very different. Single-site binders often act as inhibitors of a 

specific enzyme, but dimerizers (i.e., Class Ia) induce gain of function through forcing 

protein–protein associations. It is thus possible that by setting up low-occupancy binding 

conditions (i.e., less than stoichiometric target-binding), even chimeras derived from 

promiscuous ligands can have highly specific effects. This is because formation of the 

desired protein complex will cause a large gain in activity even at low ligand occupancy, 

whereas unintentional off-target binding will be low occupancy and is unlikely to usher a 

gain of function.

Modularity and Non-Invasive Functionalization

The multicomponent scaffolding is the centerpiece of both Class Ia and Ib probe design in 

which each of the components is typically derived from known ligands. Unfortunately, not 

all protein ligands are amenable to functionalization, either because they lack a suitable 

functionalizable appendage, or because chemical modification perturbs function. Thus, there 

are relatively few bona fide ligand—protein pairs directly amenable to Class I approaches. 

Furthermore, most of the functionalizable protein ligands are actually inhibitors of a specific 

enzyme, principally because protein binders have traditionally been identified from activity 

modulation screens. This caveat often limits downstream chemical biology applications 

because protein targets are mostly restricted to those with an enzymatic function,113 but that 

activity will be inhibited as consequence of ligand binding. Various methods have been used 

to combat this deficiency, including the use of artificial domains (Class Ia and b) such as 

DHFR. These considerations are not applicable if a pole can be found that interacts with a 

site that is not functionally coupled to the target enzyme’s activity, e.g., the target protein is 

part of a complex. For instance, in the case of PROTACS, catalytic chemistry 

(ubiquitination) is carried out by the E2 ligase, which is complexed to the target of the 

PROTAC, an E3 ligase.

More recently, drug-screening methods that append macromolecular barcodes onto small-

molecule ligands have become widespread.114 These innovations provide a goldmine of 

potential small-molecule ligands (not necessarily inhibitors) selective for a particular POI 

(not necessarily those with enzymatic functions) that must be tolerable to functionalization 

to appear as a hit. On the bright side, for proof of principle, genetically encodable protein 

tags—such as SNAP,60, 76 CLIP,76 DHFR,115 Halo,116 and PRIME117—can greatly extend 

the scope and generality of all methodologies, provided the researcher is prepared to study 

ectopic proteins and evaluate that the tag does not perturb protein function drastically. The 

ease with which knockdowns/knockouts or inducible systems can now be generated46, 47 

additionally provides opportunities to study these fusion POIs against the null background or 
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with minimal perturbation to the endogenous organizations. With the advent of engineered 

immune cells for targeted therapy,48, 118 there is also a distinct possibility that these artificial 

domains could be used in “real-life” applications.

Class II. Proximity-Directed On-Demand Targeting

The most recent years have witnessed the emergence of proximity-directed controlled 

release/delivery of reactive small-molecules in situ.17–19, 70, 119 This method can obviate 

some of the problems associated with conventional multicomponent tethering (Class I). 

Instead of linking multiple small-molecule modules through a chemical tether that remains 

unbroken throughout the course of the assay (Figure 1, Class Ia and Ib), a latent warhead is 

linked to a recognition element for a specific POI. Activation of the warhead can be 

achieved by (a) sensitization (generation of a reactive intermediate upon contact with one 

pole of the ligand); or (b) through photouncaging of a protected, inert precursor of the 

reactive signal built into one pole of the ligand, breaking the tether in the process (Figure 1, 

Class II) thereby enabling proximity targeting to the POI. The basic design of Class II—

particularly the sensitization strategy—is not new; chromophore/fluorophore-assisted laser 

activation (CALI/FALI) methods were introduced in 1988.120–122 In these systems, reactive 

oxygen species (ROS) are overproduced in cells by excitation of photosensitizers—

engineered fluorescent proteins or dye molecules. POI-specific targeting is achieved either 

via tethering organic chromophores/fluorophore—such as malachite green or fluorescein—

to POI-binding antibodies (delivered into cells via microinjection) or small-molecule 

ligands. Generality was subsequently shown through the use of tagging domains fused to the 

POI. These early proof-of-concept studies required high irradiation doses with focused laser 

beams and arc lamps that have deleterious effects on cells.123, 124 A further limitation of the 

early method was off-target photodamage during irradiation, stemming from the requirement 

for excess quantities of toxic dyes that cannot be easily washed away.121 Thus, high-affinity 

binding of the chromophore/fluorophore to the POI is often a necessary factor.

To overcome some of these shortcomings, a more effective visible-light-driven singlet 

oxygen-generating CALI reagent was recently developed by tethering a [RuII(bpy)3]2+ 

photocatalyst (an oxygen sensitizer) to cell-permeable peptoids125 that are selective binders 

of POIs (Figure 11).119 This reagent was field tested with both intracellular and integral 

membrane POIs. The hyperpotency of these CALI-based peptoid–ruthenium conjugate 

inhibitors was demonstrated in direct comparison with their parent compounds in light-

triggered inactivation of the vascular endothelial growth factor receptor 2 (VEGFR2)126 and 

the chymotrypsin-like activity of the 26S proteasome (Figure 11).127

On-demand flipping of redox switches by T-REX™

In the recent decades, many reports have indicated that endogenous electrophiles can exert a 

specific redox-linked signaling role in cells.128–132 Electrophile signaling is presumed to 

occur through modification of specific redox sensor proteins. Until recently, researchers 

used bolus dosing with the reactive signal of choice to model these endogenous signaling 

events. Unfortunately, because of the promiscuity of these reactive signals [e.g., >400–800 

functional targets have been profiled for the reactive signaling molecule 4-hydroxynonenal 

(HNE)],130, 133–135 it is challenging to pinpoint gain-of-function signaling responses that 
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require only modest levels of modifications on a single sensor protein.131, 133, 135 Conditions 

of global stimulation and the associated off-target effects can also lead to generation of 

secondary signaling metabolites/oxidative stress that further confound analysis and data 

interpretation. Motivated to provide a gateway to track specific gain-of-function responses 

brought about by non-enzyme-dependent redox-linked protein modifications, our laboratory 

has pioneered the concept of targetable reactive electrophiles and oxidants (T-REX™).17–19 

A bifunctional small-molecule ligand was designed with one pole featuring the HaloTag116-

recognition unit, a chloroalkane, and the other end bearing a photocaged precursor to a 

specific reactive signal. Photouncaging releases the signal with temporal precision and in 

substoichiometric quantity with respect to the target POI fused to Halo (Figure 11). The 

released entity can either react with the target POI, or can diffuse away from the solvent 

cage, where it is likely intercepted by reactive small-molecule thiols in the cell such as 

glutathione. The engineered bacterial dehalogenase domain, HaloTag (~33 kDa protein),116 

ensures target POI specificity, limits the amount of electrophile to be at most stoichiometric 

to POI, and was shown to be inert to most reactive electrophiles.19 T-REX™ has recently 

shown that single-protein modifications by HNE are sufficient to elicit pathway activation. 

The commercial availability of the human and mouse ORFeomes as HaloTagged libraries 

also enables identification of novel HNE-sensing proteins using the Halo-ORFeome library 

in combination with T-REX™.

CALI/FALI and T-REX™ embody the Class II proximity-directed regimen and a 

comparison of these systems with Class Ia and Ib tethering systems reveals interesting 

advantages and disadvantages. The key advantage of the Class II is that the small molecule 

that would constitute the second pole in Class I is free to diffuse and is unaffected by 

chemical modification. By contrast, Class I requires the second pole— while still tethered to 

the first pole—to be effective in POI binding. Because of specific mechanistic differences, 

the Class I approach is compatible with irreversible and reversible ligands, whereas the 

Class II approach only works for long residence (most likely irreversible) binders. In 

contrast to Class I in which high-selectivity ligands are typically preferred, the aim of Class 

II is to endow a non-specific ligand with high specificity for a particular POI [or for proteins 

in a specific locale (vide infra)] through proximity enhancement. There is little to be gained 

from release of high selectivity ligands unless its targeted delivery to one subcellular locale 

is required.

On the other hand, the differences between CALI/FALI119–122 and T-REX™17–19 lie 

principally in their release stoichiometry. In CALI/FALI, a sensitization event repeatedly 

allows activation of cellular oxygen for the duration of the laser irradiation. In T-REX™, a 

controlled amount of a reactive entity to a maximum level of stoichiometry is unleashed. 

Thus CALI/FALI protocols can generate a large quantity of reactive signals; T-REX™, on 

the other hand, guarantees a substoichiometric release of the reactive electrophile, 

mimicking substoichiometric redox-linked modifications and signaling. Thus T-REX™ 

works best on reactive sensor proteins, often rich in reactive Cys that rapidly capture highly 

reactive electrophiles: whereas, CALI/FALI can affect proteins that are less reactive because 

reactive oxygen species can be generated until photobleaching occurs. By similar logic, T-

REX™ is best used to study a small-molecule-initiated gain of function (or dominant loss of 
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function) or a new downstream signaling event, rather than small-molecule-induced 

inhibition or loss of function. Because CALI/FALI is a “targeted overload” method, it works 

well to inhibit target proteins because 100% target protein labeling is possible, although 

precision control of target POI labeling stoichiometry may be more challenging.

It is possible that spatial positioning of the chromophore or caged precursor, respectively, 

relative to the tethered protein will affect targeted delivery in both CALI/FALI and T-

REX™. Although this weakness would be expected to apply most to T-REX™, for the 

proof-of-concept target POI, Keap1, the position of the HaloTag affects neither delivery nor 

Cys-residue specificity. This result is consistent with T-REX™ targeting the most reactive 

cysteine(s) in the target protein, which are likely to be the ones that sense freely-diffusive 

endogenous electrophilic signals. Finally, T-REX™ requires UV photouncaging (Figure 12), 

which may limit utility to cell culture and transparent organisms. Successful integration of 

two-photon uncaging techniques may surmount this problem.

Methods Analogous to Class II On-Demand Targeting

Some methods closely related to CALI/FALI and T-REX™ have recently been reported. 

These use proximity targeting through in-situ unmasking of reactive entities with a goal of 

understanding interacting proteins, or which proteins are present in a particular locale.

Proximity-Targeted Biotin Capture

Biotin-dependent proximity-driven small-molecule chemistry has afforded powerful insights 

into biological systems. This general strategy is most readily exemplified by proximity-

dependent biotin identification also known as BioID.136 The heart of the BioID platform is a 

reactive, AMP-activated biotin generated in situ. An engineered promiscuous biotin ligase 

(BirA*) is fused to the POI (Figure 13). Upon biotin stimulation, BirA* creates activated 

biotin that is subsequently released within the local environment of the POI, enabling 

biotinylation of lysine residues within spatially proximate (10 nm radius)137 proteins. 

Subsequent streptavidin enrichment, peptidic digest, and MS proteomics permit 

identification of unknown targets or validation of hypothesis-driven binding partners to POI. 

A recent case of this innovative tool was demonstrated with functional characterizations of 

large protein assemblies in nuclear pore complex organization.137

Another biotin-dependent proximity capture system has also emerged aimed at ribosome 

profiling (Figure 14).24, 25, 138 A spatially restricted biotin ligase (BirA) fused to, for 

instance, an endoplasmic reticulum (ER) or mitochondrial-specific protein, is co-expressed 

with ribosomes that are engineered to bear AviTags, substrates for BirA. Whole-cell 

stimulation with biotin causes proximity-targeted biotinylation, enabling the elucidation of 

specific subgroups of ribosomes at defined locations or with specific interacting factors. The 

method was successfully applied to paint a detailed spatiotemporal picture of local protein 

synthesis and posttranslational translocation at the ER as well as at ER-associated 

ribosomes.

In another innovation dubbed “APEX”, an engineered class I cytosolic pea or soybean 

ascorbate peroxidase (28-kDa) is specifically targeted to a particular organelle using a 
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localization sequence.20–23 The peroxidase catalyzes H2O2-mediated oxidation of biotin 

phenol introduced to cells. Temporal control is achieved by 1-min H2O2 stimulation of the 

cells (Figure 15). The nascent short-lived radical thus formed covalently attacks electron-

rich amino acids on nearby protein targets. These endogenous biotinylated targets are 

enriched with streptavidin beads, and identified by MS sequencing. This method has proven 

successful in answering key questions underlying mitochondrial compartmentalization.

The proximity-dependent biotin-derived capture methods above have proven powerful as 

discovery-based tools. The choice of capture method used is dependent on many factors. 

Since, in principle, any Class II and related approaches can be used to profile associated or 

proximal proteins, we catalog the key points to consider. (1) Half-life of the reactive 

molecule generated. This parameter defines the “radius of influence” or distance over which 

a reactive small molecule can “label” prior to decay. Consensus second-order rate constants 

for the reaction of probes with reduced glutathione, a biologically relevant reference reacting 

partner, are shown in Table 1. (2) Reactivity spectrum of the activated probe. Ideally, an 

affinity capture agent will react non-discriminately with any protein. This parameter will 

scale roughly with bimolecular rate constants in Table 1, but is also a function of amount of 

probe produced, and duration of experiment. (3) Stability of the complex formed after 

reaction. This variable defines whether the signal can be relayed to another protein post 

capture, thereby potentially diluting the signal among secondary players. For instance, acyl 

phosphates, like those generated during the course of BioID, can in principle react with any 

nucleophilic residue including those bearing amines139 and thiols.140 The latter creates a 

thioester, which can react with other nucleophilic residues (potentially on other proteins), 

whereas the former makes a stable amide bond. (4) Reaction context/conditions. Acyl 

phosphates, for instance, vary in their stability and reactivity from having second order 

kinetics ranging from slow (undetectable) to relatively fast as a function of metal ion/Lewis 

acid activation141 and pH of the microenvironment.142 Radicals, on the other hand, are 

intrinsically more reactive and of more transient nature, making them more generally 

applicable.

At present, all biotin-dependent capture methods rely on exogenous small-molecule 

stimulation. In the case where the stimulant is a high concentration of H2O2 such as in 

APEX, even though this is only for one minute, it remains to be addressed how the approach 

may affect the very proteins intended to be profiled. This question is critical because 

exogenous H2O2 challenge is known to perturb signal transduction pathways148, 149 and 

organelle dynamics150. For instance, 10-s pulsing with 1 µM H2O2 reportedly activates 

cellular redox relay chains151 and 5-min exposure to 1.5 mM H2O2 has been shown to elicit 

Ca2+-release channel activation.152 It is possible that a combination of a co-localized point 

source of H2O2 (generated on-demand in a controlled manner) and BirA in conjunction with 

global biotin-phenol administration could remedy this issue. Using such a dual delivery 

system, locale/protein specificity will likely be enhanced because any aberrant APEX or 

H2O2 generation would be unlikely to colocalize. It should further be noted that APEX and 

its derivatives, as well as BirA mutants, are the product of extensive genetic engineering in 

which the desired activity is honed through a combination of directed evolution, 
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computational analysis, and rational mutagenesis based on structural knowledge of the 

tagging enzyme.

Summary and Outlook

Given the complexity of the systems chemical biologists study, there is no panacea to 

universally solve all problems. However, as our discussion shows, there is a considerable 

amount of overlap between all tethered processes, because they share common 

physiochemical principles. We thus recommend a thorough survey of tethered chemistry 

prior to undertaking/designing experiments to try to anticipate problems, and afford 

preemptive solutions. It is also paramount going forward that we have as many tools 

available to study biology from a chemical perspective as possible. For this reason, both 

Class I and II approaches should be considered when planning an experiment or developing 

a method. The tethered approach can endow low affinity/selectivity ligands/proteins with 

laser-guided binding accuracy, and it can further force reactive associations, which 

otherwise would require an unknown stimulus or cue. It is thus often the case that the Class 

I approaches require that an outcome/association/end point be known or presumed; for 

example, a specific POI is inhibited, such as in BOLT, or a specific POI forms a tether 

through a specific sugar as in aptamer ligation, or a specific POI is degraded through a 

specific pathway, such as with PROTACS. This requirement may be restrictive, however the 

power of small-molecule tethering to promote an atypical cellular process will remain an 

important arrow in the quiver of life scientists. This is principally because gain of function is 

not a common mechanism for compounds that bind single sites on enzymes, such as 

therapeutics.153, 154 Thus, there remains a huge scope to explore phenotypic output using 

substoichiometric modification through gain-of-function-induced proximity targeting.

T-REX™ shows that on-demand targeting through provisional or momentary tethering can 

afford similar levels of specificity to permanent tethering. However, there is no evidence 

that T-REX™ induces electrophilic modification of proteins that are not intrinsically 

electrophile reactive, thus the target POI and reactive signal likely should be chosen to be a 

“matched” pair. Assuming that the players are known, T-REX™ is another method to elicit 

gain-of-function events in cells, and thus elicit “cellular mind control”. On-going 

experiments show that T-REX™ is a useful screening tool and can identify the most reactive 

proteins in a panel of postulated sensor proteins. Beyond eliciting redox responses through 

on-demand redox targeting, T-REX™ currently stands as a test case for future development 

of synthetic systems that would enable precision-controlled gain-of-function 

posttranslational modifications through, for instance, low-stoichiometry acetylation155, 156 

and methylation events157 on a specific POI that in turn drive specific biological outcomes. 

Aside from CALI, the other Class II-related approaches are arguably best used to identify 

new interactions. This is because Class II and related ideas are, by their nature, unbiased: 

only one ligand pole is bound to a specific protein, leaving the other pole free to react. The 

power of BioID and APEX testify to the efficacy of this strategy. It remains to be shown 

whether systems like T-REX™ can be used in similar applications.

A huge body of evidence indicates that the proximity-dependent approach has potential to be 

used in a wide array of circumstances. However, current approaches are directed mostly at 
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the basic science level. We anticipate future efforts will also be devoted to extending these 

proof-of-concept design principles to testing in whole organisms and ultimately in humans.
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ABBREVIATIONS

CID chemical induced dimerization

POI protein(s) of interest

PROTACs proteolysis-targeting chimeras

VHL von Hippel-Lindau

CAR chimeric antigen receptor

SyAM synthetic antibody mimic

FcγRs Fc gamma receptors

LUCIDs luciferase-based indicators of drugs

BRET bioluminescence resonance energy transfer

HCA human carbonic anhydrase II

CLASH chemical ligand-associated steric hindrance

AChE acetylcholine esterase

SiaNAz N-azidoacetylneuraminic acid

BOLT bioorthogonal ligand tethering

IEDDA inverse-electron demand Diels-Alder

DHFR dihydrofolate reductase

ADMET absorption, distribution, metabolism, excretion, and toxicity

CALI chromophore-assisted laser inactivation

FALI fluorophore-assisted laser inactivation

VEGFR2 vascular endothelial growth factor receptor 2

T-REX™ targetable reactive electrophiles and oxidants

LDEs lipid-derived signaling electrophiles

ER endoplasmic reticulum

Cys cysteine
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AMP adenosine monophosphate
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Figure 1. 
In this Perspective, the chemical biology toolsets built upon proximity enhancement are 

classified into two general categories, Class I and II. Class I is further broken into two 

subclasses: in Subclass Ia, the bifunctional probe enables recruitment of two or more distinct 

biological entities (proteins/cells), thereby promoting a response; and in Subclass Ib, one 

pole of the small molecule serves as an anchor to the POI and the other pole reacts 

intramolecularly with the same POI. In Class II, on-demand precision targeting enables the 

reactive entity to be unmasked in situ and targeted to (or the microenvironment of) POI. In 

all cases, in the absence of ligands known to bind POI, ligands generic to various protein- 

and peptide-based tags (Halo, CLIP, SNAP, PRIME, etc.) that can be fused to POIs may be 

integrated into the probes.

Long et al. Page 24

J Am Chem Soc. Author manuscript; available in PMC 2016 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Endogenous protein degradation by PROTACs. The tethered bifunctional PROTAC unites 

the POI with an E3 ubiquitin ligase, allowing for an E2-mediated transfer of ubiquitin (Ub). 

The PROTAC thus enables targeted polyubiquitination and degradation by the 26S 

proteasome. Inset: non-peptide-derived PROTACs that can induce targeted degradation of 

the nuclear estrogen-related receptor alpha (top) and the serine/threonine kinase RIPK2 

(bottom).
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Figure 3. 
On-switch CARs is built upon a binary logic gate system in which simultaneous presence of 

tumor antigen and CID-based small molecule dimerizer (e.g., rapamycin analog AP21967) 

triggers T cell activation.
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Figure 4. 
SyAMs. The tethered bifunctional SyAMs unite disease-relevant targets (cancer cells/viral 

and bacteria pathogens) and immune cells by binding simultaneously to a specific 

membrane antigen and Fc gamma receptor I. This prompts immune clearance of the targets. 

Inset, the third-generation SyAM-P3 comprising a pair of CP33, the FcgRI binding motif, 

and a pair of prostate-specific antigen binding motifs.
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Figure 5. 
LUCIDs. Tethered TMP binding to DHFR (POI) enables BRET between the nano-Luc 

enzyme and Cy3 dye. Titration with methotrexate (blue pentagon) displaces TMP, thus 

preventing BRET.
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Figure 6. 
CLASH enables on/off switching of POI activity by making use of two ligands with 

mutually exclusive binding to POI. Tethering results in intramolecular protein–ligand 

interaction that is disrupted by an effector biomolecule [streptavidin in (a) and (b)] or small 

molecule [tacrine in (c)] that competes with the ligand within the tethered array that initially 

binds POI. In (b), only the ground state in the absence of streptavidin is shown. POI is 

exemplified by nano-luciferase (a) and HCA (b) and (c).
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Figure 7. 
Scaffolding via an aptamer allows glycoprotein-specific fluorophore targeting against the 

backdrop of metabolically SiaNAz-labeled cell-surface glycans. Proximity enables strain-

promoted click coupling between cyclooctyne tethered to aptamer and the azidosugar-

labeled receptor.
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Figure 8. 
iBOLT and photoBOLT. The bifunctional smallmolecule probe undergoes an inverse-

electron demand Diels–Alder (IEDDA)/retro Diels–Alder reaction with the unnatural amino 

acid on the POI to form a covalent linkage. Light-driven cis–trans isomerization enables 

reversible activity modulation.
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Figure 9. 
Covalent capture enables stable dye incorporation through an acylamide appendage that can 

conjugate with the engineered cysteine K28CDHFR mutant fused to POI.
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Figure 10. 
Covalent capture concept in stable dye incorporation using a fusion peptide that bears a 

Texas Red fluorophore-binding sequence (blue) and reactive Cys residues.
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Figure 11. 
In this CALI-based strategy, Ru(II)(tris-bipyridyl)2+ (purple motif, inset) functions as a 

photosensitizer for the generation of singlet oxygen (1O2). Binding of the peptoid (inset, 

blue motif) to a specific POI (e.g., VEGFR, 26S proteasome) allows targeted inactivation of 

POI by excess 1O2 produced by the Ru catalyst upon irradiation with the visible light of 

indicated parameters.
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Figure 12. 
T-REX™ exploits the on-demand precision targeting concept. Inert photocaged precursors 

delivered to cells selectively and covalently bind HaloTag fusion proteins (inset) and excess 

is washed away. Photouncaging driven by 365 nm light rapidly unleashes up to 

stoichiometric amounts of reactive lipid-derived signaling electrophiles (LDEs) from the 

HaloTag as a point source (inset, representative LDEs). Targeted LDE modifications on a 

specific POI in turn elicit gene-specific redox signaling on demand in the backdrop of an 

unperturbed cell. Reproduced from reference 19 with permission from the ACS.
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Figure 13. 
BioID. BioID enables identification of proximate proteins for a candidate POI fused to 

biotin ligase BirA* upon stimulation of cells with biotin. The practical labeling radius in 

cells is ~10 nm.
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Figure 14. 
Proximity-Specific Ribosome Profiling. This deep sequencing-based method requires co-

expression of spatially restricted (e.g., ER or mitochondrial membrane) biotin ligase BirA 

and ribosomes fused to its substrate, AVI tag. Pulsing of live cells with biotin enables 

biotinylation of proximal ribosomes. Enrichment of biotinylated ribosomes and subsequent 

deep sequencing of ribosome-protected mRNAs inform spatiotemporally precise message 

translation.
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Figure 15. 
APEX. The ectopically expressed APEX peroxidase targeted to a specific organelle (in this 

case mitochondria) catalyzes the oxidation of biotinphenol by exogenously added H2O2. The 

reactive biotinphenoxy radical covalently labels proximate mitochondrial matrix proteins, 

enabling proteomics profiling of biotinylatated proteins from defined locations. MLS, 

mitochondrial localization sequence.
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Table 1

Rate constants for reaction with GSH

Entry Reactive Entity k (M−1s−1)a Conditionsa

1143 H2O2 0.9 37°C, pH 7.4

2144 O2
●− 1.8×105 pH 7.4c

3145 ●OH 3×109 pH 7.0c

4146 HNE 1.3 23°C, pH 7.4

5146 ONEb 145 23°C, pH 7.4

6147 2×106 pH 7.2c

a
See references for details.

b
4-oxononenal.

c
Temperature not reported.
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